

PROFESSIONAL CRO SERVICES PROVIDER

□ mRNA

□ saRNA

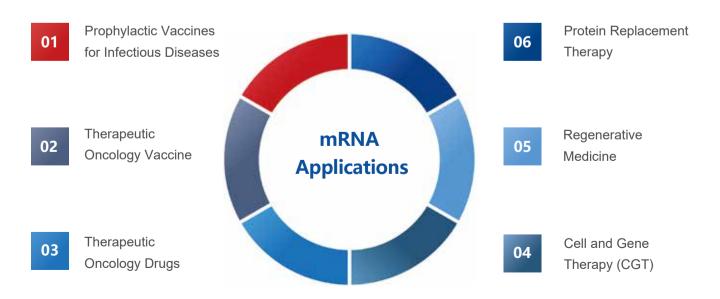
□ circRNA

□ siRNA

R&D Direction

Raw material enzymes, plasmids, mRNA, CircRNA long chain nucleic acid drugs, single-domain antibodies (sdAbs), recombinant proteins/polypeptides and many other categories

Service Contents


- Biological raw material development
- Drug screening
- Basic technology research in the field of gene therapy
- Quality research of biological products
- Preparation process development of microbial expression drugs
- Preparation process development of cell-related drugs (biosafety at P2 level) and related quality research

mRNA Research-Grade Sample Preparation Services

The outbreak of the COVID-19 pandemic in 2020 pushed mRNA technology to the center stage, with unprecedented heat for related research and rapid development in multiple fields such as infectious disease prevention, tumor therapy, protein replacement therapy, regenerative medicine, and cell and gene therapy (CGT).

mRNA Applications

Yaohai Bio-Pharma has established a sophisticated and comprehensive "RNASci" mRNA research-grade sample preparation service platform incorporating four core modules. This platform offers a one-stop solution, encompassing sequence design and optimization, gene synthesis, recombinant plasmid construction, linearized template preparation, in vitro transcription (IVT), purification, and mRNA quality control, spanning the entire lifecycle from mRNA design to sample generation. It comprehensively supports and empowers the process of mRNA vaccine and drug development.

ONE STOP SOLUTION >>

Sequence design & optimization

Gene synthesis

>>>

Recombinant plasmid preparation

Linearized template preparation

mRNA purification

>>>

IVT

mRNA quality control and analysis

"RNASci"mRNA

Service Platform

PLATFORM TECHNICAL CONTENT

- 5' UTR and 3' UTR optimization design
- CDS zone optimization design
- PolyA tail optimization design

mRNA SERVICE PLATFORM

Platform for mRNA structural design and optimization

- mRNA template plasmid design and construction
- Conventional mRNA (capping structure, PolyA tail structure)
- Nucleotide modification
 (e.g. φ, N1ψ, 5mC

mRNA synthesis)

Platform for mRNA synthesis and modification

- LiCl precipitation and purification
- Magnetic bead purification
- Self-developed chromatography column process purification

mRNA purification

- Purity detection system
 [AGE (agarose gel electrop horesis), CE]
- (WB,ELISA)Translation expression detection system (WB,ELISA)
- Capping Efficiency Detection System (cooperative detection)
- PolyA distribution assay system (cooperative assay)

mRNA quality analysis and control

RNASci

RNADes

RNASyn

RNAPur

RNAQua

Features of "RNASci" mRNA Service

Highly Expressed Natural & Modified UTR

- Establishment of natural UTR library, and diversified UTR source selection can match the appropriate UTR sequence for different products;
- 5'UTR optimization for more efficient transcription of templates;
- Internationalized PolyA tail structural design strategy;
- Well-developed codon optimization methods and special optimization needs can be performed in cooperation with professional AI algorithm team.

Superior Capping Process for Efficient Transcription and Improvement of Application Activity

- Highly productive and stable capping process with a capping efficiency of >95%;
- PolyA tail integrated transcription formation, with more uniform distribution;
- Diversified mRNA modified nucleotides, effectively reducing the adverse immune response of mRNA in human;
- Flexible plasmid template design scheme for client's specific needs.

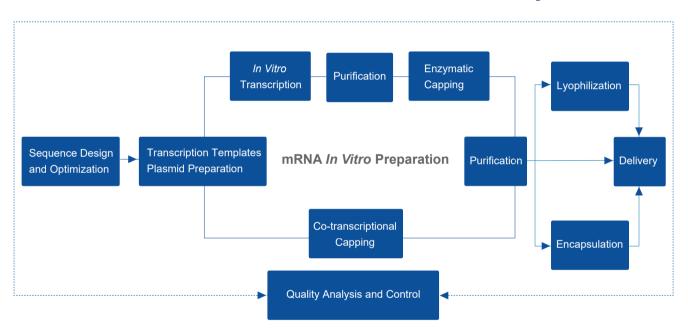
General & Self-developed Chromatography Process, Providing Diversified Purification Methods

Diversification:

A comprehensive purification solution consisting of tangential flow filtration + multiple chromatography packing can effectively remove impurities from mRNA crude products for high quality applications;

General & Self-developed Purification Process:

Well-developed and perfect LiCl precipitation + magnetic bead purification + chromatography purification solution; Completely self-developed, chromatography purification solution can effectively remove impurities in mRNA preparation.


Comprehensive Quality Control Platform meets the Quality Control Needs of Each Research Phase

- Meet the general QC requirements for scientific -grade concentration and purity;
- Meet the special QC needs such as mRNA translation test, capping rate, and tail distribution, etc.

mRNA Research-Grade

Sample Preparation Services

Process Development Flow

Service Details

Service Items	Optional Items	Service Details Delive	ery Period (days)	Deliverable
mRNA sequence	Design and optimization of coding sequences	CDS sequence design and codon optimization	1-3	
design and optimization	Design and optimization of non-coding sequences	Design and optimization of UTR, polyA sequences		
		Gene synthesis	7-10	Sequence fil
Transcription template plasmid	Recombinant plasmid preparation	Plasmid amplificationand extraction		
preparation		Plasmid linearization and purification	4	
		In vitro transcription (Clean Cap analog)		
	Co-transcription and capping	Nucleotide modifications (UTP/CTP modifications)	1-2	
	(one-step method)	DNA template removal (DNase I)		
mRNA in vitro		In vitro transcription		
transcription		Nucleotide modifications (UTP/CTP modifications)		
	Enzymatic capping (two-step process)	DNA template removal (DNase I)	2-3	N/A
		mRNA purification (lithium chloride/magnetic bead	s)	
		Enzymatic capping		
	Conventional purification solutions	Lithium chloride precipitation		mRNA drug substance
mRNA		Magnetic bead purification	1	
purification	Chromatography column purification solution	Combination of multiple chromatography methods	1-2	
	Solution exchange	Ultrafiltration and liquid exchange	1	
		Pre-freezing		mRNA lyophilized powder
mRNA lyophilization	Lyophilization	Primary drying (sublimation)	2-3	
., op		Secondary drying (desorption)		
mRNA		LNP encapsulation	0.0	mRNA-LNP
encapsulation	LNP encapsulation	Concentration and liquid exchange	2-3	drug produc
	mRNA drug substance/	Concentration, purity	1	
	lyophilized powder	Integrity, capping rate, polyA tail distribution	2-5	
mRNA quality analysis		Encapsulation rate		
	mRNA-LNP preparation	Particle size and distribution detection	1	
		Surface charge detection		Test Report
		Cell plating	1	
mRNA expression validation	293T cell evaluation	Transient transfection of cells	4	
		Fluorescence signal observation		
		Western blot/ELISA	1-3	

Catalog mRNA Products

Classification of coded proteins	Product Name	Optional Modified Nucleotides	Delivery Form	Product Specification
	mRNA_mCherry-eGFP		 Lyophilized powder Drug substance (500 ng/µL) 	
Reported	mRNA_eGFP			
genes	mRNA_mCherry	 No modification Pseudouracil (Ψ) N1methyl pseudouracil (Ν1Ψ) N5methylcytosine (5mC) Other modifications 		
	mRNA_luciferase			• 10µg
Viral antigens	mRNA_Spike protein (COVID-19)			• 50µg
	mRNA_IL-2			• 100 µg
Cytokines	mRNA_IL-4			• 10 mg
	mRNA_IL-22			
Immunogen	mRNA_OVA			
Nucleases	mRNA_Cas9			

Service Advantages

Integrated Service Flow

Provide a series of services from front-end sequence design to back-end mRNA preparation, quality control and expression validation.

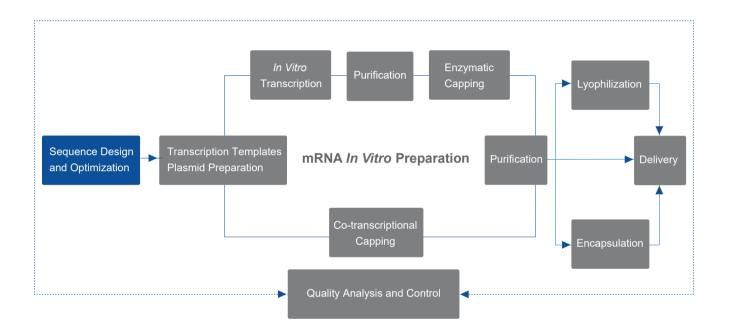
International Cutting-edge Sequence Design and Optimization

Professional mRNA sequence design and optimization facilitates efficient mRNA expression.

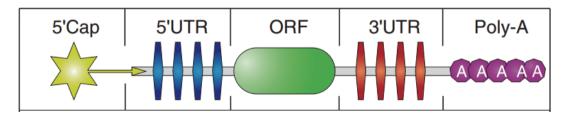
Diversified Nucleotide Modifications

Effectively increase mRNA expression and reduce mRNA adverse immune responses.

Mature Purification


A combination of general & self-developed purification process provides high purity mRNA samples. Complete QC platform: Enrich QC options to meet the requirements of routine tests such as concentration, A260/280 purity and integrity, as well as high quality control requirements such as capping rate/polyA distribution.

Fast Delivery


Same-day shipment of mRNA pre-products. Customized mRNA can be delivered within 7 days except for outsourced sequence synthesis.

mRNA Sequence Design and Optimization Services

According to the central dogma, messenger RNA (mRNA) is the bridge for the transmission of genetic material from DNA to proteins. mRNA plays a biological role by encoding proteins in vivo, and mature mRNA in eukaryotic organisms consists of **five components**: 5' Cap (cap structure), 5' UTR (non-coding region), the ORF (open reading frame), 3' UTR, and 3' polyA tail (polyadenylate tail).

Schematic diagram of mRNA structure

Please refer to the following for the functions and optimization strategies of each component of mRNA:

mRNA components	Biological Functions	Optimization Strategies
5' Cap	Protect mRNA from degradation by exonucleases and act in concert with the polyA tail at the 3' end, polyA binding protein and translation initiation factor protein to initiate protein translation.	The natural Cap1 structure avoids pattern recognition receptor and thus reduces the natural immune response, which can be achieved by one-step co-transcription capping or two-step enzymatic capping [see mRNA enzymatic capping and co-transcription capping for details].
5' UTR	The 5' UTR can be recognized by ribosomes, regulate the translation of mRNA and affect the stability of mRNA	The 5' UTR contains Kozak sequences that do not have a highly stable secondary structure. Natural UTRs of highly expressed genes are preferred for synthetic mRNAs such as α - and β -bead protein gene sources.
CDS	Protein-coding regions, and coding sequences for antigens, antibodies or other functional proteins.	Codon optimization increase the level of translation, noting that certain non-optimal codons may play a role in protein folding.
3' UTR	Regulate mRNA translation and stability.	Natural UTRs of highly expressed genes are preferred for synthetic mRNAs, such as α - and β -bead protein gene sources.
3' polyA tail	Regulate protein expression and protect cap structure from degradation.	Adequate length (100-150 bp) is required; encoding poly(A) tail on the transcription template plasmid ensures a more defined polyA tail length.

[1] Linares-Fernández S, et al. Trends Mol Med. 2020;26(3):311-323.

Service Details

Service Items	Optional Items	Detailed Steps	Delivery Period (Days)
	Design and optimization of coding sequences	CDS sequence matchingCDS codon optimization	1
mRNA sequence design and optimization	Design and optimization of non-coding sequences	 5' UTR sequence design and optimization 3' UTR sequence design and optimization polyA sequence design and optimization 	1-2

Service Advantages

Diversified TR Source Selection

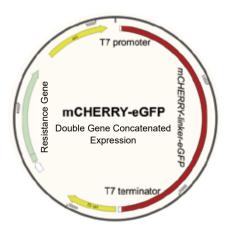
Multiple sources of highly expressed natural & modified UTR libraries, and mature UTR modification strategy;

Cutting-edge CDS Optimization Team

Cooperate with professional AI algorithm team to complete the optimization of codons.

Homogeneous PolyA tail Distribution

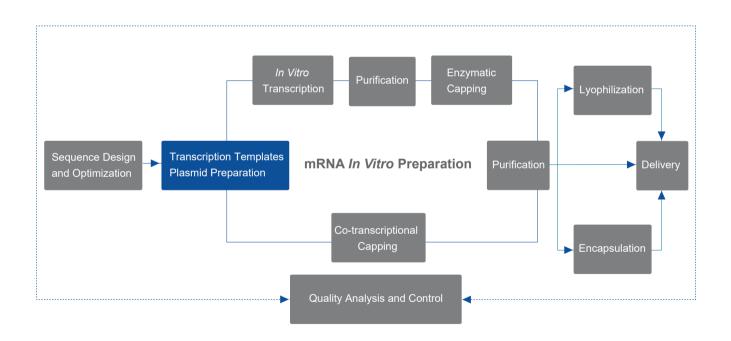
Integrated transcription formation of PolyA tail, with more homogeneous distribution.

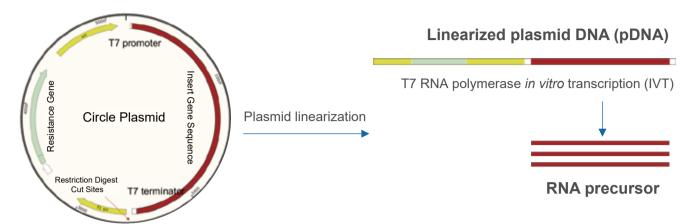

Diversified Optimization Combination

Achieve efficient expression of mRNA, with low immunogenicity.

Case Study

Yaohai Bio-Pharma's mRNA service continues to be upgraded with the design and optimization of a double reporter gene tandem sequence, which allows co-expression of dual genes. Using a standard transfection reagent, the double gene tandem sequence mRNA_mCherry-eGFP is efficiently introduced into 293T cells. Subsequently, after 48 hours, two distinct fluorescent signals from mCherry (red) and eGFP (green) are simultaneously detected, with their combined visualization highlighted in yellow on the stacked graph.




Sequence design and in vitro expression validation of circRNA_eGFP

mRNA Transcription Template Plasmid Service

In the process of *in vitro* mRNA preparation, linearized plasmid DNA (pDNA) is required as the transcription template for *in vitro* transcription (IVT) with the help of T7 RNA polymerase. High-quality plasmid DNA is crucial for downstream IVT. Based on the mature plasmid preparation service platform, a linearized pDNA preparation service of high purity and high standard can be provided to achieve efficient downstream IVT.

Schematic diagram of IVT using linearized pDNA as template

Service Details

Service Items	Optional Services	Service Details	Delivery Period (Days)	
	Gene synthesis	Gene synthesis (outsourced)	7-10	
Cyclic plasmid preparation	Plasmid amplification	Plasmid amplification	2	
		Plasmid extraction	2	
Linearized plasmid	Plasmid linearization and	Plasmid linearization	1	
preparation	purification	Purification of linearized products		
	Concentration purity	Ultraviolet (UV) spectrophotometry		
Plasmid DNA (pDNA)	Plasmid conformation	Agarose gel electrophoresis (AGE)		
quality control	i iasiiliu comomiation	Capillary electrophoresis (CE)-Ooptional	1-2	
	Plasmid integrity	Restriction enzyme identification/AGE		

Service Advantages

Freecut Template Plasmids

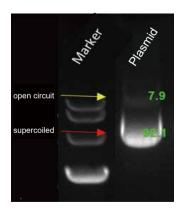
Flexible plasmid template design options can satisfy the specific customization needs.

High Recovery

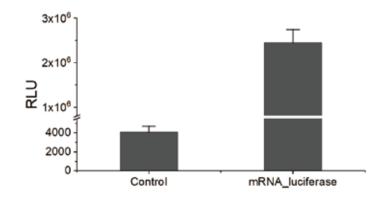
Continuous optimization of DNA extraction and purification methods can achieve high recovery.

Mature Technology

Provide plasmid preparation and quality control services of high standard and high efficiency to meet the needs of downstream tests.

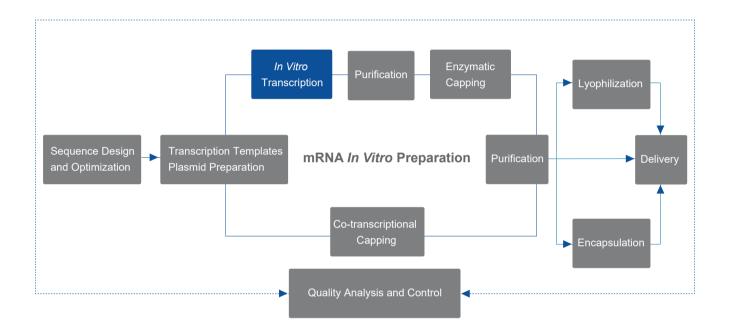

Stringent Specification

Plasmid samples for research with a superhelical conformation ratio of >70%.


Case Study

Taking Yaohai Bio-Pharma mRNA_luciferase product as an example, the transcription template plasmid sample (research grade) has a superhelical ratio of more than 90%, a linearization ratio close to 100%, and a subsequent transcription ratio up to 1:200 (linearized pDNA: mRNA).

The mRNA_luciferase obtained through the preparation of a linearized plasmid as a template is transfected into 293T cells, and the enzyme-substrate reaction activity is evaluated 24 h after transfection. An obvious strong luciferase activity signal can be detected, i.e., the luciferase protein is expressed efficiently, suggesting the purity of the transcription template, which can fully satisfy the requirement of high-quality mRNA preparation.



Plasmid Superhelix Ratio Assay

Validation of mRNA-mCherry Expression In Vitro

mRNA In Vitro Transcription Service

Regarding the preparation of mRNA in batches, *in vitro* transcription (IVT) is a more efficient and mature method. The IVT reaction adopts linearized plasmid DNA (pDNA) containing T7 promoter as template and mRNA is synthesized with nucleoside triphosphates (NTPs) as substrate in the presence of T7 RNA polymerase.

Nucleotide modification is a major breakthrough in the exploration of drug formulation of mRNA, where unmodified mRNA molecules are recognized by intracellular RNA sensors to activate innate immunity. For considerations of mRNA *in vivo* immunogenicity and translation efficiency, the IVT process usually employs certain kinds of modified NTPs, and common modified nucleotides are pseudouridine (Ψ), N1-methyl-pseudouridine (N1Ψ), and 5-methylcytosine (5mC).

In Vitro Transcription (IVT) Process of mRNA

Linearized plasmid DNA (pDNA)

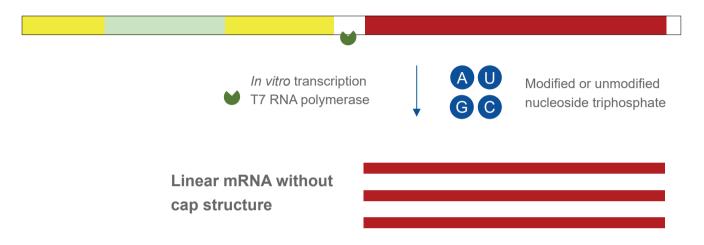


Figure: IVT reaction diagram

Service Details

Service Items	Service Details	Delivery Period (Days)	
	Reaction system confirmation		
<i>In vitro</i> transcription	IVT		
(IVT)	Nucleotide modifications (Ψ/N1Ψ/5mC)	1	
	DNA template removal (DNase I)		
IVT condition optimization - optional	Reaction system design and optimization	2-5	

Service Advantages

Improve mRNA stability and protein expression levels *in vivo*.

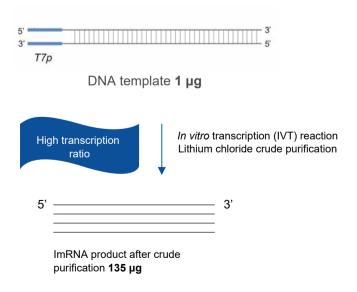
Diversified Nucleotide Modification Strategies

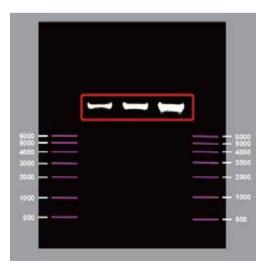
mRNA fragment preparation up to 10kb can be achieved.

Rigorous Test Design and Optimization

By optimizing *In vitro* transcription (IVT) reaction conditions, high efficiency transcription is achieved with a transcription ratio of up to 1:200.

Efficient Transcription

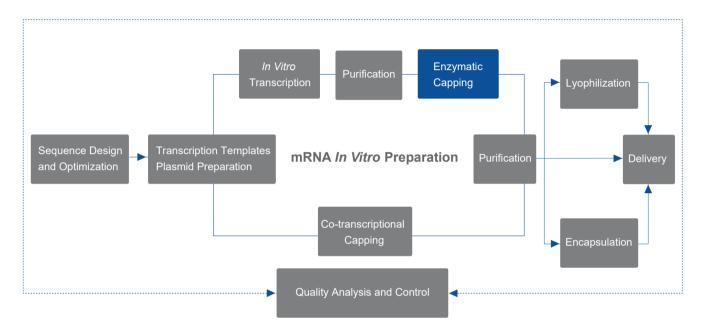

Stringent enzyme control through experimental environment and consumables can effectively prevent mRNA degradation.


Stringent Enzyme Specification

Case Study

The current *In vitro* transcription (IVT) reaction system is roughly optimized for synthetic systems with a length of about 100 nt, not for mRNAs of arbitrary length. The longer the mRNA sequence, the more difficult to transcribe and the more prone to degradation.

To prepare customized mRNA sequences of approximately 10 kilobases in length, Yaohai Bio-Pharma has achieved remarkable success. Through meticulous experimental design, continuous refinement of reaction conditions, and strict management of RNase, we have been able to transcribe 1 microgram of linearized plasmid in vitro, resulting in a high transcription ratio of 1:135. This process has yielded 135 micrograms of both crude and purified mRNA products, ensuring the quality and integrity of our customized samples.



mRNA length and purity assay

mRNA

Enzymatic Capping Service

5'-end capping is an essential modification of mRNA. mRNAs with cap structures, especially Cap1 cap structures, facilitate mRNA evasion of innate immune responses *in vivo*, resulting in efficient protein translation.

Enzymatic capping (two-step method) is the conventional method of mRNA capping, similar to the capping process in eukaryotic organisms. Under the action of a series of enzymes, 7-methylguanine (m7G) is linked to the 5'-end of mRNA through a 5'-5' triphosphate bond and undergoes methylation modification to form the cap structure Cap 1 (m7GpppN).

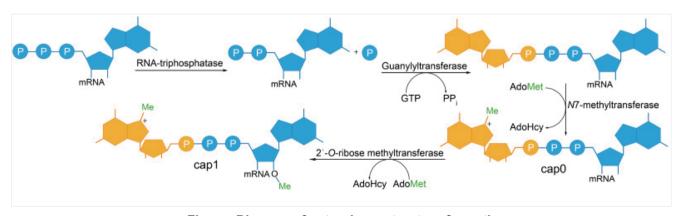


Figure: Diagram of natural cap structure formation

The enzymatic capping reaction flow is as follows: Linearized plasmid DNA (pDNA) is used as a template for *in vitro* transcription (IVT) in the presence of T7 polymerase, and mRNA with a 5' end-cap structure is formed after a one-step purification using vaccinia capping enzyme and 2'-O-methyltransferase.

Linearized plasmid DNA (pDNA)

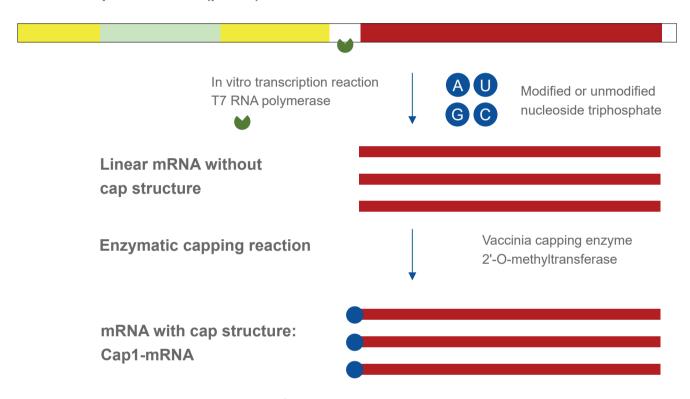


Figure: Diagram of mRNA enzymatic capping reaction

Service Details

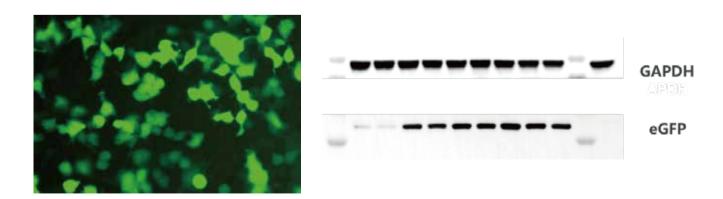
Service Items	Service Details	Delivery Period (Days)	
mRNA enzymatic capping	Reaction system verification	1	
	Enzymatic capping reaction	'	
Capping response optimization - optional	Reaction system design and optimization	3-7	

Service Advantages

Design and Optimization of the Capping Reaction System

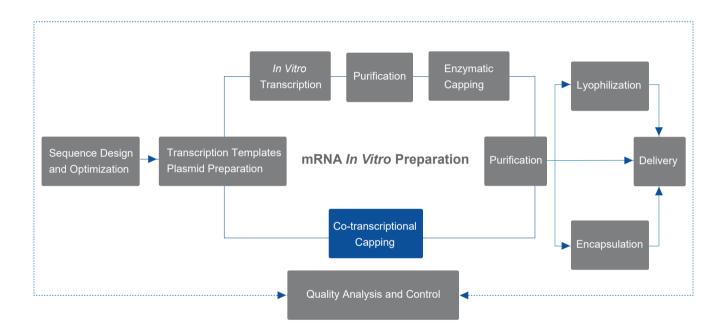
The in vitro transcription (IVT) reaction system is adjusted and the mRNA transcription product is greatly enhanced.

In Vitro Expression Verification


The capped mRNA is transfected into 293T cells, and the expression of the target protein can be detected.

Stringent Enzyme Specification

Through stringent enzyme control on experimental environment and consumables, mRNA degradation is effectively prevented.


Case Study

Yaohai Bio-Pharma's mRNA platform has built a perfect capping reaction system. mRNA_eGFP is the mRNA product prepared by enzymatic capping. A high level of eGFP fluorescence signal can be detected by Western Blot(WB) after transfecting 293T cells for 24 h. It demonstrates that the target protein eGFP can be efficiently expressed *in vitro*.

Co-transcription Capping Service

Compared with the two-step enzymatic capping method, the one-step co-transcription capping method can significantly reduce the process flow. The method is result-oriented, and by adding cap analogs to the *in vitro* transcription reaction system, cap analogs can be introduced at the start of transcription, and mRNA with cap structure can be obtained upon completion of transcription. Current third-generation cap analogs can avoid reverse capping and directly add Cap 1 cap structure to the transcription product.

For considerations of mRNA *in vivo* immunogenicity and translation efficiency, the *in vitro* transcription (IVT) process often adopts certain kinds of modified NTPs, and common modified nucleotides are pseudouridine (Ψ), N1-methyl-pseudouridine (N1 Ψ), and 5-methylcytosine (5mC).

Linearized plasmid DNA (pDNA)

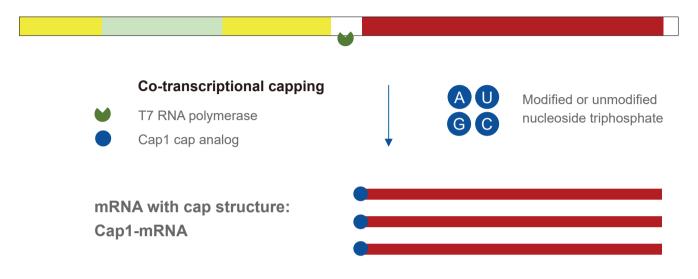


Figure: Diagram of mRNA Co-transcriptional and capping reaction

Service Details

Service Items	Service Details	Delivery Period (Days)
	Reaction system verification	
Co-transcriptional	In vitro transcriptional response (Clean Cap analog)	
capping	Nucleotide modifications (Ψ/Ν1Ψ/5mC)	1-2
	DNA template removal (DNase I)	
In vitro transcription (IVT) condition optimization - optional	Reaction system design and optimization	3-7

Service Advantages

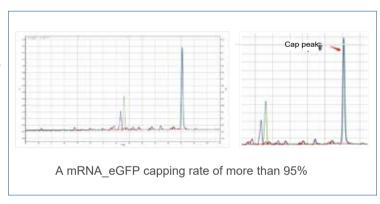
Multiple optional nucleotide modification strategies can improve protein expression.

Diversified Nucleotide Modification Strategies

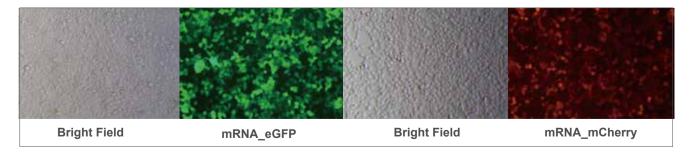
Achieve a high transcription ratio and a high capping rate.

Optimized Reaction System

Achieve a capping rate of more than 95%.

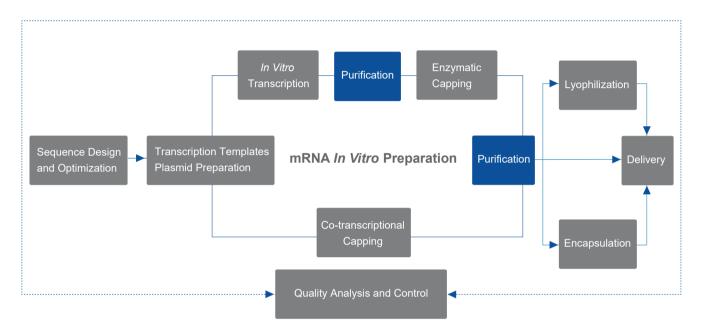

Stable Capping Process

Prevent mRNA degradation effectively through stringent enzyme control on experimental environment and consumables.


Stringent Enzyme Specification

Case Study

Yaohai Bio-Pharma has developed a mature Co-transcriptional capping process platform, utilizing Clean Cap analogs to directly incorporate the Cap1 cap structure and prevent reverse capping. Following standardized sample pre-treatment and capillary electrophoresis (CE) detection, the capping rate of the mRNA_eGFP product can exceed 95%.


The mRNA_eGFP and mRNA_mCherry products prepared by co-transcriptional capping are transfected into 293T cells, respectively, and a strong fluorescent signal is observed after 48h, suggesting that the mRNA is efficiently expressed in 293T cells.

mRNA

Purification Service

The mRNA prepared by *in vitro* transcription (IVT) and capping reaction requires further purification to remove the immunogenic unconsumed substrates and reaction by-products from IVT and capping reaction to ensure the efficacy and safety of the mRNA drug.

Yaohai Bio-Pharma can provide mature solutions for LiCl precipitation, magnetic bead purification and chromatography purification, which can effectively remove multiple impurities and prepare high-purity mRNA.

LiCI Precipitation Method

Simplified purification solution of small amounts of mRNA for cell transfection and some animal experiments; For the purification of pre-capped samples after *in vitro* transcription(IVT).

Oligo dT Magnetic Bead Purification Method

Purification solutions of small amounts of mRNA for cell transfection and some animal experiments; For the purification of pre-capped samples after *in vitro* transcription(IVT).

Chromatography Purification Method

Purification solutions with multiple chromatography compositions such as affinity, ion exchange and hydrophobic chromatography;

Meet the downstream application scenarios with higher quality requirements, such as cell transfection, and Lipid nanoparticle (LNP) encapsulation, etc.

Service Details

Service Items	Optional Items	Detailed Steps Deli	very Period (Day	/s) Delivery
mRNA purification	Conventional purification solution	Lithium chloride precipitation		
		Magnetic bead purification	1	mRNA drug
	High purity purification solutions	Affinity chromatography or multiple chromatography combinations	2	substance (DS)
	Buffer exchange	Ultrafiltration and buffer exchange	1	
mRNA quality control	Concentration measurement	Ultraviolet (UV) spectrophotometry	0.5	
	I Integrity and purity testing	Agarose gel electrophoresis	0.5	Test report
		Capillary electrophoresis (CE)-optional	1	

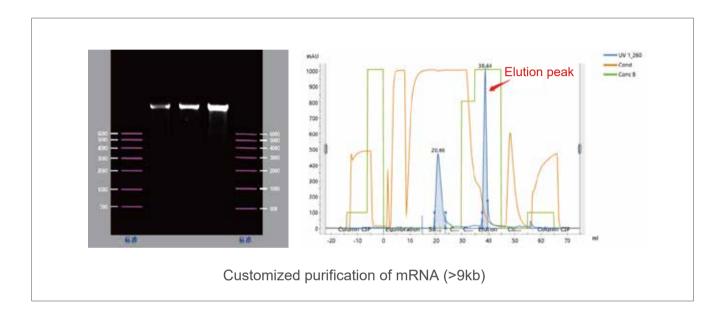
Service Advantages

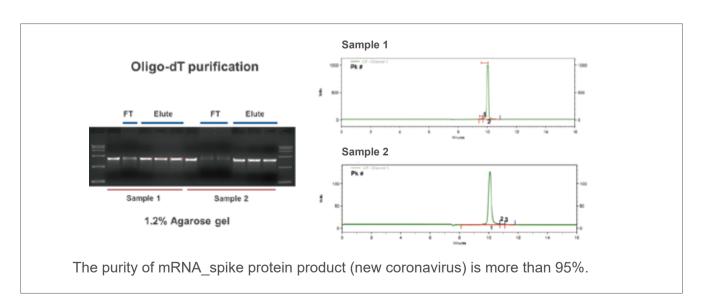
A variety of optional purification solutions

can meet different downstream application scenarios.

The purity of mRNA can routinely reach more than 95%, with the highest purity reaching 100%.

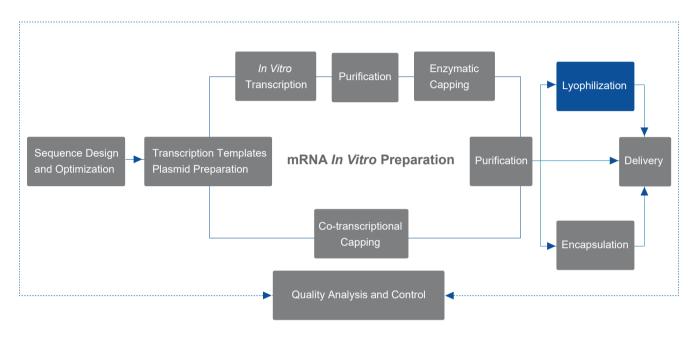
Stringent enzyme specification

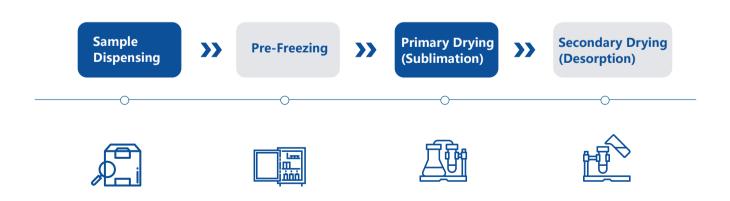

can prevent mRNA degradation through stringent enzyme control of experimental environment and consumables.



Case Study

Yaohai Bio-Pharma can provide mature mRNA purification solutions, which can effectively remove various small molecule process-related impurities.


The purity of mRNA samples prepared by chromatography can reach more than 95% as detected by capillary electrophoresis, and the content of dsRNA is less than 0.06% as detected by enzyme-linked immunosorbent assay (ELISA) kit, which meets the demand of downstream application of mRNA with high quality.



mRNA

Lyophilization Service

In order to improve the stability of mRNA and avoid loss in storage and transportation, Yaohai Bio-Pharma can provide mRNA lyophilization service for client to freeze-dry the mRNA drug substance (DS). In this way, DS can be stored or transported in the form of lyophilized powder, which can significantly reduce the degradation and loss of mRNA.

Service Details

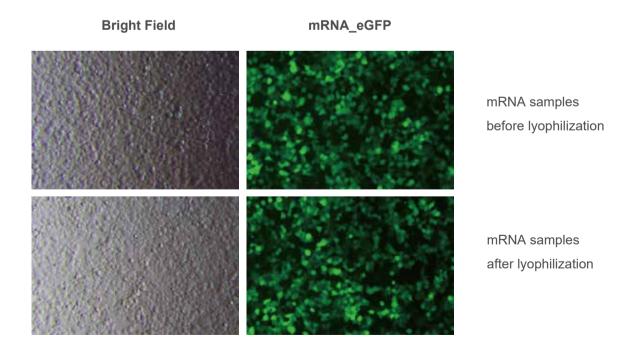
Service Items	Optional Items	Detailed Steps	Delivery Period (Days)	Deliverables
	Sample dispensing	Dispensing		
mRNA		Pre-freezing	2-3	mRNA
lyophilization	Lyophilization	Primary drying (sublimation)	2-3	lyophilized powder
		Secondary drying (desorption)		
	Reconstitution of lyophilized powder	Reconstitution / Resuspension	-	
mRNA quality control	Solubility of lyophilized powder	Appearance inspection	-	
quality control		Ultraviolet (UV) spectrophotometry	0.5	Test report
	Concentration measurement	Agarose gel electrophoresis	0.5	
	Integrity and purity testing	Capillary electrophoresis (CE)-optional	1	

Service Advantages

Mature Lyophilization Process

Lyophilization has no effect on mRNA integrity.

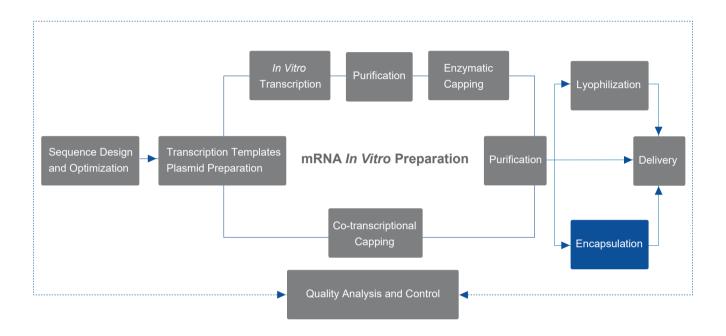
Homogeneous Quality Properties


mRNA samples before and after lyophilization can successfully express the target protein.

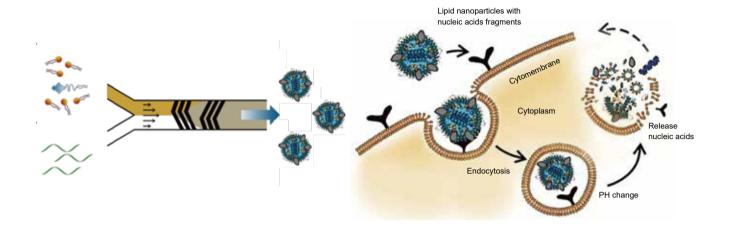
High Stability

mRNA lyophilized powder is easy to store and transport.

Case Study


Using conventional liposomes, mRNA samples before and after lyophilization are transfected with 293T cells for cellular evaluation. The results show that strong fluorescence signals are observed before and after the lyophilization of mRNA eGFP sample products, which can express the target protein efficiently *in vitro*.

mRNA-LNP


Encapsulation Service

The basis of encapsulation is the design and development of the delivery system. A well-designed delivery system allows mRNA molecules to enter the body without being degraded by RNA enzymes, and then to be effectively delivered to the target site, cross the cell membrane and be released intracellularly. Lipid nanoparticles (LNPs) are the optimal delivery systems available, with advantages in terms of encapsulation, *in vivo* expression, and *in vivo* safety compared to other delivery systems. Lipid nanoparticles (LNPs) with nucleic acid fragments are easily swallowed into cells and form intracellular bodies. Once inside the cell, the acidic environment of the intracellular body protonates and positively charges the head of the ionized lipid, which fuses with the inner membrane of the intracellular body and releases the target nucleic acid into the cell for action.

Yaohai Bio-Pharma mRNA service continues to improve and now can provide mRNA-LNP encapsulation service, optimize relevant critical process parameters, and improve the consistency and reproducibility of mRNA drug production (DP).

YAOHAI BIO-PHARMA

Material and Liquid Pretreatment

Microfluidics

Tangential Flow Filtration

Sterilization Filtration

Two strands of bulk are prepared: one for mRNA in aqueous buffer and one for lipids dissolved in ethanol.

Rapid mixing of lipid, mRNA two-phase solutions using microfluidic devices, resulting in uniform lipid nanoparticle (LNP) and high efficiency encapsulation.

The bulk is concentrated to the desired target concentration of the drug product (DP) through the process of ultrafiltration. Following this, the buffer is exchanged with a neutral storage solution in order to effectively remove any unencapsulated mRNA, excess lipids, and acetic acid.

Comply with the sterility regulations, the terminal sterilizing filtration system is selected, and the bacterial challenge test passes.

Service Details

Service Items	Detailed Steps	Delivery Period (Days)	Delivery	
	Material and liquid pretreatment	2		
mRNA-LNP encapsulation	Microfluidic device mixing	2	mRNA-LNP drug product (DP)	
	Ultrafiltration concentration			
	Sterilizing filtration			
	Encapsulation rate			
	Particle size and distribution detection	1		
mRNA-LNP quality control	Surface charge detection		Test report	
	mRNA-LNP expression validation	5-7		

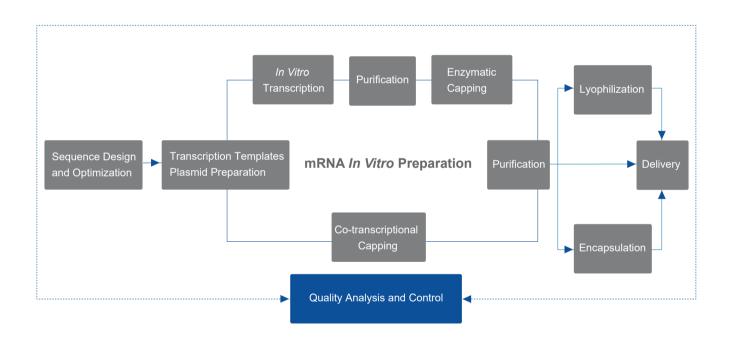
Service Advantages

Mature Manufacturing Technology

Fast synthesis, efficient R&D services and pre-optimized solutions.

High Encapsulation Rate

mRNA-LNP encapsulation rate can reach more than 90%.


Nanoparticle Size

Lipid nanoparticle (LNP) size can be effectively controlled by changing the fluid injection rate and ratio.

Efficient Expression

mRNA-LNP products are validated by in vitro cell expression and can express the target protein efficiently.

mRNA Quality Analysis and Control Service

According to the Technical Guidelines for Pharmacological Studies of Novel Coronavirus Prophylactic mRNA Vaccines issued by the NMPA in 2020, it is recommended to implement quality control measures for the DNA template, mRNA drug substance (DS), and finished mRNA-LNP.

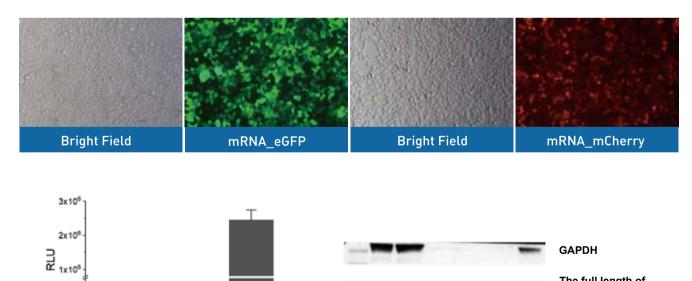
Yaohai Bio-Pharma can provide quality analysis services for cyclic and linearized plasmids, mRNA drug substance (DS) and finished LNP-mRNA to meet client project needs in all aspects.

Service Details

Samples	Test Items	Testing Method	Delivery Period (Days)	Deliverables
	Concentration/Purity	Ultraviolet (UV) spectrophotometry	N/A	
Cyclic plasmid DNA	Superboliv ratio	Agarose gel electrophoresis (AGE)	0.5	
	Superhelix ratio	Capillary electrophoresis (CE)	1	
	Concentration/Purity	Ultraviolet (UV) spectrophotometry	N/A	
Linearized plasmid DNA	Linearized rate and	Agarose gel electrophoresis (AGE)	0.5	
(pDNA)	integrity	Capillary electrophoresis (CE)	1	
	Concentration/Purity	Ultraviolet (UV) spectrophotometry	N/A	Test report
	Integrity	Agarose gel electrophoresis (AGE)	0.5	
mRNA drug substance		Capillary electrophoresis (CE)	1	
(DS)	Capping rate	Capillary electrophoresis (CE)	3	
	PolyA distribution	Capillary electrophoresis (CE)	3	
	dsRNA	Enzyme-linked immunosorbent assay (ELISA)	1	
mRNA-LNP	Encapsulation rate	RiboGreen method	1	
drug product (DP)	Particle size and distribution	Particle size meter	1	
	Surface charge	Particle size meter	1	
		Cell transfection	4	
mRNA expression validation	293T cell evaluation	Fluorescence observation	1-3	
		Western blot (WB)/Enzyme-linked immunosorbent assay (ELISA)	1-3	

In addition to mRNA-related quality attributes, based on the mature cell culture platform, Yaohai Bio-Pharma can provide clients with specificity assay services of mRNA cell transfection and target proteins to transiently transfect 293T cells with mRNA to verify whether mRNA can successfully express the target protein in cells *in vitro*. The range of samples that can be tested includes mRNA drug substance (DS) and finished mRNA-LNP.

Cell Plating	Sample Preparation	Cell Transfection	Target Protein Detection
	[] []		12
Recording cell generations Observation of cell morphology Cell plating	mRNA + Transfection reagents or mRNA-LNP	mRNA Transfected to 293T cells	Fluorescent photo shoot Western blot (WB) Enzyme-linked immunosorbent assay (ELISA)



Service Details

Samples	Test Items	Testing Methods	Delivery Period (Days)	Deliverables
		Cell plating		
mRNA	293T cell evaluation	Transient transfection of cells	4	Test report
expression validation		Fluorescence signal observation		
		Western blot (WB)	1-3	
		Enzyme-linked immunosorbent assay (ELISA)		

Case Study

Yaohai Bio-Pharma has built a mature platform for cell culture, cell transfection and protein specificity assays, which can verify the in vitro expression of target proteins based on fluorescence signal, Western Blot (WB) / enzyme-linked immunosorbent assay (ELISA) or substrate - enzyme reaction signal.

mRNA_luciferase

Control

mRNA_luciferase

mRNA_Spike protein(Newcrest)

The full length of

sprotein

the novel coronavirus

4000

2000

mRNA Platform

Equipment

Bio-Rad Gel Imagers

Cytiva AKTA Purification System

Bio-Rad PCR Machine

Thermo qPCR Machine

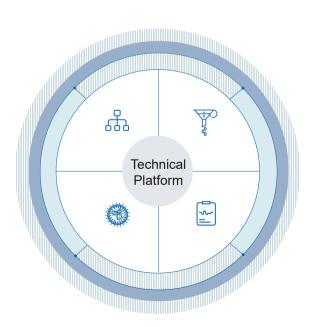
SCIEX Capillary Electrophoresis Instrument

Waters HPLC

Thermo Full Wavelength Enzyme Labeler

Fluorescence Microscope

PNI Microfluidic Nanoparticle Preparation System


Technical Platform

RNADes

circRNA structure design and optimization

RNASyn

circRNA synthesis and modification

RNAPua

circRNA purification

RNAQua

circRNA quality analysis and control

Platform Features

Structure Design and Optimization

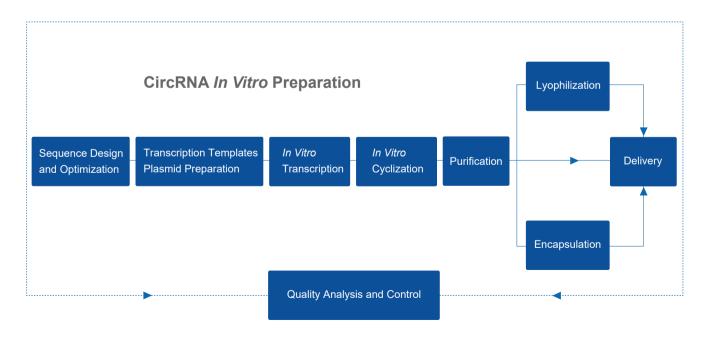
Cutting-edge "PIE" loop-forming technology, efficient intron and exon combination CDS, internal ribosome entry site (IRES) optimization design

CircRNA Synthesis and Modification

circRNA template plasmid design and construction circRNA synthesis solution with a loop formation rate of >80%


CircRNA Purification

Conventional purification solution of trial grade
Self-developed chromatography column purification process


CircRNA Quality Analysis and Control

Multiple purity assays
High-performance loop formation rate assay

Process Development Flow

Service Details

Service Items	Optional Items	Service Details	Delivery Period (days)	Deliverables	
circRNA sequence	Design and optimization of coding sequences	CDS codon optimization	1.0		
design and optimization	Design and optimization of non-coding sequences	Design and optimization of Internal ribosome entry site (IRES), intron	1-3		
		Gene synthesis	7-10	Sequence file	
circRNA transcription template plasmid service	Plasmid DNA preparation	Plasmid amplification and extraction			
30. 1.00		Plasmid linearization and purification	4		
	In vitro transcription	In vitro transcription (IVT)			
circRNA <i>in vitro</i> transcription and cyclization	In vitro cyclization	RNA cyclization based on PIE system	2-3	N/A	
Cyclization	,	circRNA enrichment			
	Conventional purification	Lithium chloride precipitation			
circRNA	solutions	Magnetic bead purification	1	circRNA drug	
purification	Self-developed purification solutions	Self-developed purification solutions	1-2	substance (DS	
	Solution exchange	Ultrafiltration liquid exchange	1		
		Pre-freezing	2-3	circRNA lyophilized powder	
circRNA lyophilization	Lyophilization	Primary drying (sublimation)			
		Secondary drying (desorption)			
circRNA	Lipid nanoparticle (LNP)	Lipid nanoparticle (LNP) encapsulation	2-3	circRNA-LNP drug product (DP	
encapsulation	encapsulation	Concentration liquid exchange and filtration			
	circRNA drug substance	Concentration, purity	1		
	(DS)/lyophilized powder	Cyclization rate	2-3	Test report	
circRNA quality analysis		Encapsulation rate			
	circRNA-LNP drug substance (DS)	Particle size and distribution detection	1		
	(= 0)	Surface charge detection			
		Cell plating	1-3	<u>.</u>	
circRNA expression	293T cell evaluation	Transient transfection of cells			
validation	2931 cell evaluation	Fluorescence signal observation		Test report	
		Western blot (WB) / Enzyme-linked immunosorbent assay (ELISA)			

CircRNA Products

Product Name	Test Uses	Delivery Form	Product Specification
circRNA_eGFP circRNA_mCherry circRNA_luciferase circRNA_OVA circRNA_IL-2 circRNA_Cas9	 Reference standard In vitro or in vivo tests 	 Lyophilized powder Drug substance (DS) (500 ng/μL) 	100 μg1 mg10 mg

Service Advantages

Process Robustness

Cyclization of RNAs from 50-4000 nt in length;

Stability

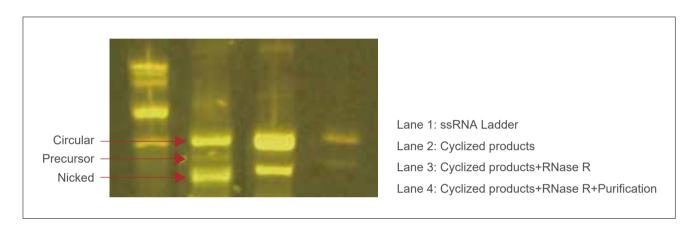
Rigorous quality control methods, with successful *in vitro* expression of products in cells;

All-round

From front-end sequence design to back-end circRNA cyclization, purification, quality control and expression validation;

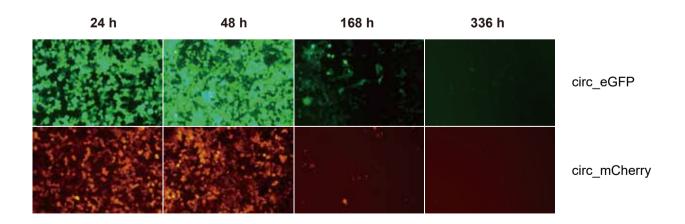
High Efficiency

With a validated cyclization rate of NLT 80%;


Flexibility

Diversified purification methods meet different downstream test needs;

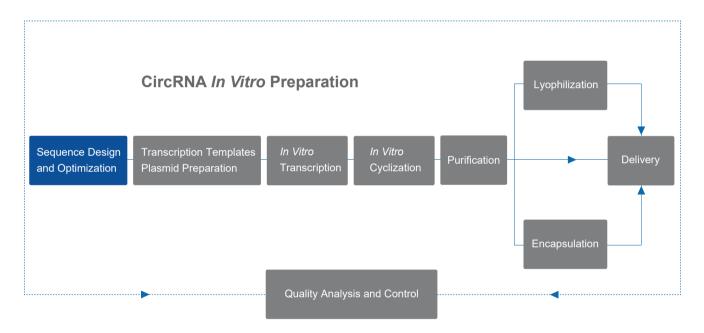
Case Study


circRNA Enrichment and Purification

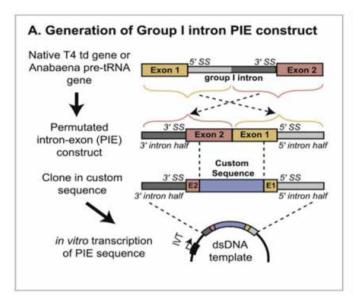
To enrich circRNA, PIE cyclized products are treated with RNase R. The electrophoresis results show that most of the nicked circRNA can be removed after linear RNA precursors are digested and further purified.* The purification solution is self-developed by Yaohai Bio-Pharma circRNA platform.

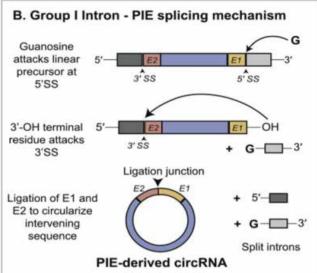
circRNA Expression Validation

The purified circRNA eGFP are transfected with circRNA Cherry into 293T cells, and fluorescence signal can be observed after 24 h, which will continuously enhanced after 48 h. The fluorescence signal can still be observed after 7 days and 14 days of transfection.



CircRNA


Sequence Design and Optimization Service


Process Development Flow

Yaohai Bio-Pharma prepares circRNA based on the PIE system (alignment of exons and introns), which relies on the self-splicing function of type I introns to achieve RNA cyclization. The PIE structure is designed using the T4 td gene or fishy tRNA precursor gene, and the arrangement is as follows: The RNA intron and supporting exon fragment are divided into two parts (5' terminal and 3' terminal), where the 5' terminal sequence is transferred to the tail of the target sequence, the 3' terminal sequence is inserted into the front of the target sequence, and the target gene sequence is inserted in the middle.

Under GTP catalysis, the PIE structure leads to the cyclization of sequences other than introns. Combined with a reasonable enhancement strategy of cyclization rate, Yaohai Bio-Pharma can achieve cyclization of sequences up to 4 kb with a cyclization rate of more than 80%.

The Functions and Design Strategies of Each Component of circRNA are Referenced Below

CircR	NA Components	Biological Functions	Design Strategy
	rminal intron and equences	GTP-catalyzed intron self-splicing for cyclization of sequences outside the intron.	Designed according to the T4 td gene or fish oil tRNA precursor gene.
Coding	IRES	Internal ribosome recognition site that regulates the translation of circRNA.	Screening of internal ribosome entry site (IRES) sequences from different viral sources, e.g. EMCV, CVB3 sources.
County	CDS	Protein-coding regions, sequences coding for antigens, single-domain antibodies (sdAbs) or other functional proteins.	Codon optimization increases the level of translation, note that certain non-optimal codons may play a role in protein folding.
Non-coding	Non-coding sequences	Target miRNAs or proteins to exert gene or protein regulation.	Targeting specific binding sites for miRNAs or proteins can repeat the sequences of the binding site.

[1] Chen X, Lu Y. Front Bioeng Biotechnol. 2021 Nov 30;9:787881...

Service Details

Service Items	Optional Items	Detailed Steps	Delivery Period (Days)
	Design and optimization of coding sequences	CDS sequence matchingCDS codon optimization	1
circRNA sequence design and optimization	Design and optimization of non-coding sequences	 Intron and exon sequence design and optimization Homologous arm sequence design and optimization Interval sequence design and optimization 	1-2

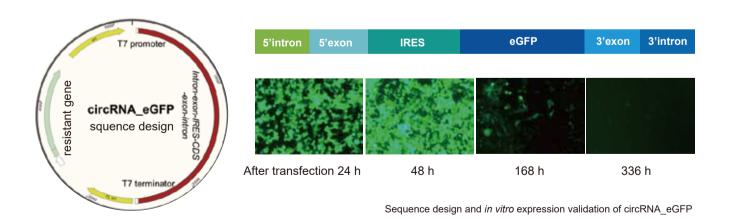
Service Advantages

Optimized PIE Cyclization System

Combined with reasonable optimization strategies to achieve a cyclization rate of NLT 80%;

Cutting-edge CDS Optimization Team

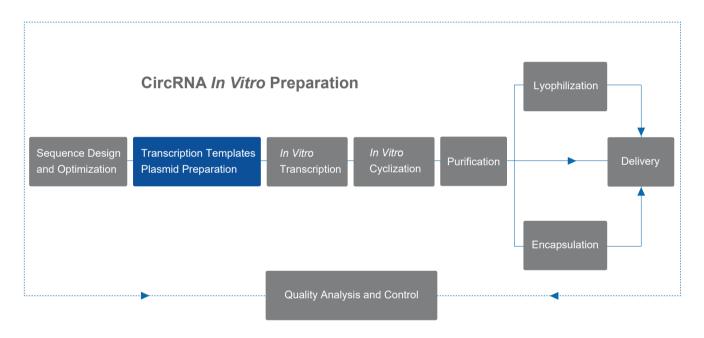
Cooperation with a professional Al algorithm team to complete the optimization of CDS region codons;


Mature Manufacturing Technology

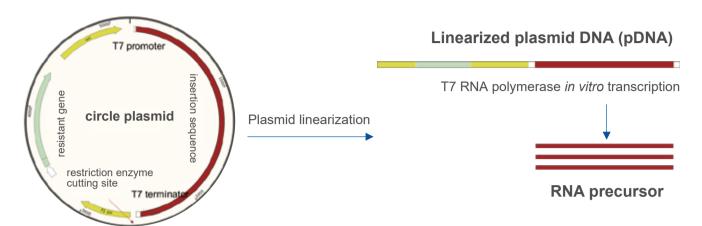
circRNA can be achieved with a high loop formation rate, high stability and high translation efficiency.

Case Study

Yaohai Bio-Pharma launched the control product circRNA_eGFP, which is based on the PIE system to achieve the cyclization of RNA. Using a conventional transfection reagent, circRNA_eGFP is transfected with 293T cells, and eGFP (green) fluorescent signal can be detected after 24h, which will be enhanced after 48h, and the fluorescent signal can still be detected after 7 days and 14 days of transfection.



CircRNA


Transcription Template Plasmid Service

Process Development Flow

CircRNA preparation requires linear RNA as precursor material (RNA precursor) for cyclization, where the RNA precursor is usually prepared using linearized plasmid DNA (pDNA) as a transcription template and transcribed in vitro with the help of T7 RNA polymerase.

High quality plasmid DNA (pDNA) is essential for downstream *in vitro* transcription (IVT). Based on the mature plasmid preparation service platform, Yaohai Bio-Pharma can provide high purity and high standard linearized plasmid DNA (pDNA) preparation service to ensure the integrity of downstream *in vitro* transcription (IVT) products.

Schematic diagram of in vitro transcription (IVT) using linearized plasmid DNA (pDNA) as template

Service Details

Service Items	Optional Services	Service Details	Delivery Period (Days)
	Gene synthesis	Gene synthesis (outsourced)	7-10
Cyclic plasmid preparation	Plasmid amplification	Plasmid amplification	2
		Plasmid extraction	2
Linearized plasmid	Plasmid linearization and	Plasmid linearization	1
preparation	purification	Purification of linearized product	- I
	Concentration purity	Ultraviolet (UV) spectrophotometry	
Plasmid DNA quality	Plasmid conformation	Agarose gel electrophoresis (AGE)	
control	i idaniila comonidation	Capillary electrophoresis (CE)-optional	1-2
	Plasmid integrity	Restriction enzyme identification/AGE	

Service Advantages

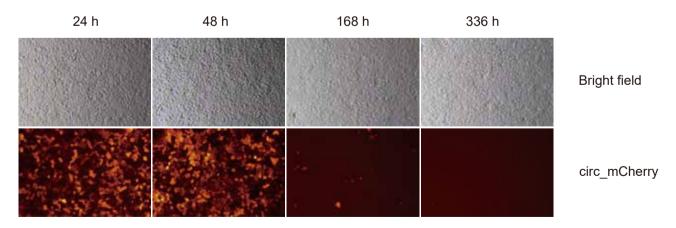
Freecut Template Plasmid Flexible selection of linearization methods.

High Recovery Rate

Continuous optimization of DNA extraction and purification methods to achieve high recovery rates.

Stringent Quality Control

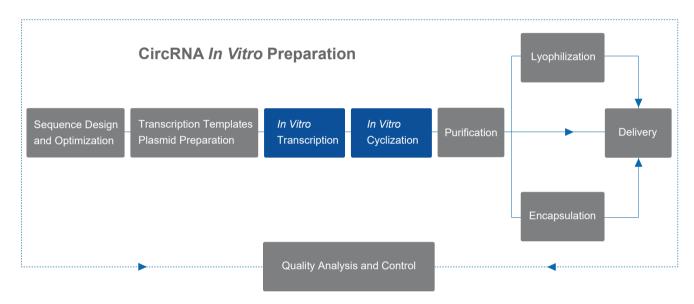
Stringent process control specifications, with a superhelical conformation rate of plasmid samples for research of >80%.


Mature Platform Process

High standard and high efficiency plasmid preparation and quality control services to meet downstream test needs.

Case Study

Take Yaohai Bio-Pharma's circRNA_mCherry product as an example, the superhelix rate of transcription template plasmid samples (research grade) is more than 70%, with a linearization rate of close to 100%.


CircRNA_mCherry is prepared with linearized plasmid as template and transfected into 293T cells. A high level of fluorescence expression (red fluorescence) is detected after 24 hours of transfection, which will be continuously enhanced after 48 hours, and can still be detected after 7 and 14 days of transfection. The mCherry protein is stably and efficiently expressed, and the transcriptional template purity can meet the requirements of circRNA drug product (DP) with high quality.

In vitro expression validation of circRNA-mCherry

CircRNA

In Vitro Transcription and In Vitro Cyclization Service

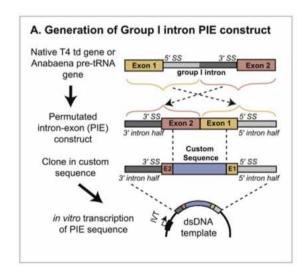
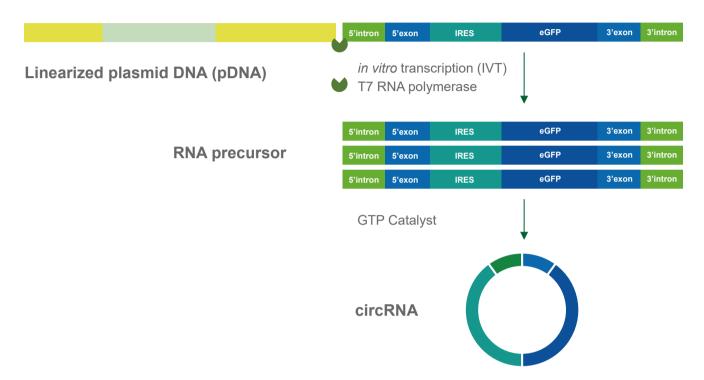


Figure: PIE sequence diagram

Regarding the batch preparation of RNA precursor, the commonly used method is *in vitro* transcription (IVT). Its reaction uses linearized plasmid DNA (pDNA) containing T7 promoter as a template and synthesizes RNA precursor with nucleoside triphosphates (NTPs) as a substrate in the presence of T7 RNA polymerase.


In vitro cyclization methods include chemical ligation, enzymatic ligation and PIE nuclease method. Chemical ligation and enzymatic ligation are suitable for the cyclization of shorter RNAs, and the cyclization rate decreases significantly for fragments larger than 100 nt, while the nuclease method based on the PIE system can achieve cyclization of 5 kb sequences.

Under GTP catalysis, the PIE structure undergoes cyclization of extra-intron sequences. Combined with a reasonable enhancement strategy of cyclization rate, Yaohai Bio-Pharma can achieve cyclization of up to 3 kb sequences with a cyclization rate of more than 80%.

The *In Vitro* Cyclization Reaction of RNA Flows As Follows:

The RNA precursor is synthesized by *in vitro* transcription (IVT), and the PIE component completes self-splicing under GTP catalysis to form circRNA.

Service Details

Service Items	Detail Steps	Delivery Period (Days)
	Reaction system confirmation	
circRNA <i>in vitro</i> transcription and <i>in vitr</i> o cyclization	In vitro transcription (IVT) and cyclization reactions	1-2
	RNase R enrichment	
Conditions optimization	Reaction system design and optimization	2-5

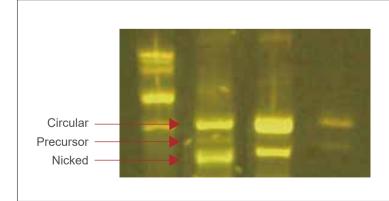
Service Advantages

Rigorous Test Design and Optimization

Up to 4 kb RNA cyclization can be achieved.

High Cyclization Efficiency

A cyclization rate of more than 80% can be achieved through a rational sequence optimization strategy.


Stringent Enzyme Control Specification

Stringent enzyme control on test environment and consumables to effectively prevent RNA degradation.

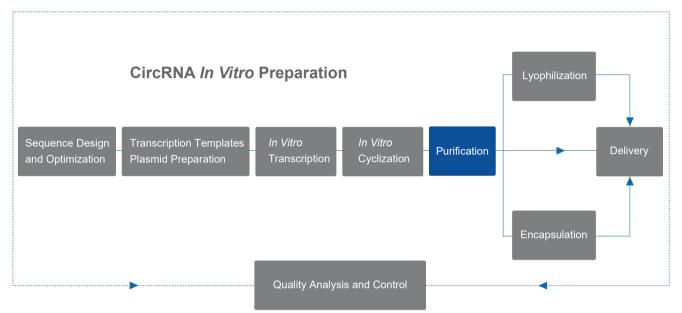
Case Study

In Vitro Cyclization and Enrichment of circRNA

Based on the PIE system, Yaohai Bio-Pharma has optimized the sequence of circRNA, with a cyclization rate of more than 80% by agarose gel electrophoresis (AGE). By using RNase R to enrich circRNA, E-gel electrophoresis results show that most of the nicked circRNA can be removed after the linear RNA precursor is digested and further purified. The purification solution is self-developed by the circRNA platform of Yaohai Bio-Pharma.

Lane 1: ssRNA Ladder

Lane 2: Cyclized products


Lane 3: Cyclized products +RNase R

Lane 4: Cyclized products +RNase R+ Purification

CircRNA

Purification Service

The products obtained by *in vitro* cyclization and RNase R enrichment require to be further removed from *In vitro* transcription (IVT), unconsumed substrates in cyclization reaction, reaction by-products and nicked RNA to meet the downstream test requirements.

Yaohai Bio-Pharma has mature LiCl precipitation, magnetic bead purification, self-developed purification and other diversified purification solutions to effectively remove various impurities and prepare high purity circRNA.

LiCI Precipitation Method

Simplified purification solution for small amounts of circRNA used in cell transfection and part of animal experiments.

Magnetic Bead Purification Method

Small amount of circRNA purification solution for cell transfection, and part of animal experiments.

Yaohai Bio-Pharma's Purification Solution

Meeting downstream application scenarios with higher quality requirements. Stable and scalable purification process to meet downstream GMP production requirements $\cancel{x} \cancel{x} \cancel{x} \cancel{x}$

Service Details

Service Items	Optional Items	Detailed Steps	Delivery Period (Days)	Deliverables
	Conventional	Lithium chloride precipitation		circRNA drug substance (DS)
circRNA	purification solution	Magnetic bead purification	1	
purification	Purification solution with high purity	Yaohai Bio-Pharma's purification solution	1-2	
	Solution substitution	Ultrafiltration liquid exchange	1	
	Concentration determination	Ultraviolet (UV) spectrophotometry	0.5	
circRNA quality control	Purity testing	Agarose gel electrophoresis (AGE)/E-gel		Test report
		HPLC-optional	1	

Service Advantages

A Variety of Optional Purification Choices

Meeting different downstream application scenarios;

High Purity

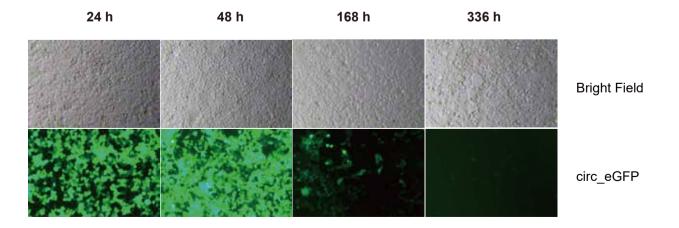
More than 90% purity of circRNA;

Stringent Enzyme Control Specification

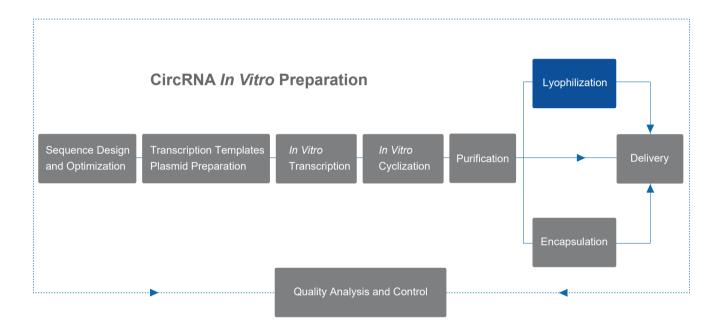
Stringent enzyme control on the test environment and consumables to effectively prevent the degradation of circRNA.

Case Study

Yaohai Bio-Pharma has established a mature circRNA purification solution, which can effectively remove various process-related impurities.


The circular RNA products purified by the conventional solution are still obviously mixed with nicked RNA and introns.

After the purification solution developed by Yaohai Bio-Pharma, various linear RNA impurities, such as nicked RNA and introns, can be successfully removed.


circRNA Expression Validation

By using a conventional liposome, purified circRNA_eGFP is transfected into 293T cells, and fluorescence signal is observed after 24 h and continued to be enhanced at 48 h. Fluorescence signal can still be detected after 7 and 14 days of transfection.

CircRNA

Lyophilization Service

In order to improve the stability of circRNA and avoid loss in storage and transportation, Yaohai Bio-Pharma can provide circRNA lyophilization service to lyophilize the circRNA drug substance (DS) and store or transport it in the form of lyophilized powder, which significantly reduces the degradation and loss of circRNA during storage and transportation.

Service Details

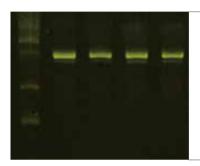
Service Items	Optional Items	Detailed Steps	Delivery Period (Days)	Deliverables
	Sample dispensing	Dispensing		
circRNA		Pre-freezing	0.0	circRNA
lyophilization	Lyophilization	Primary drying (sublimation)	2-3	lyophilized powder
		Secondary drying (desorption)		
	Reconstitution of lyophilized powder	Reconstitution/resuspension	-	
	Solubility of lyophilized powder	Appearance inspection	-	
circRNA quality control	Concentration determination	Ultraviolet (UV) spectrophotometry	0.5	Test report
	Integrity and purity testing	Agarose gel electrophoresis (AGE)/E-gel	0.5	
		HPLC-optional	1	

Service Advantages

Mature Lyophilization Process

The quality indicators of samples before and after lyophilization are consistent, with good reproducible results.

Homogeneous Quality Properties


circRNA samples before and after lyophilization successfully express the target protein.

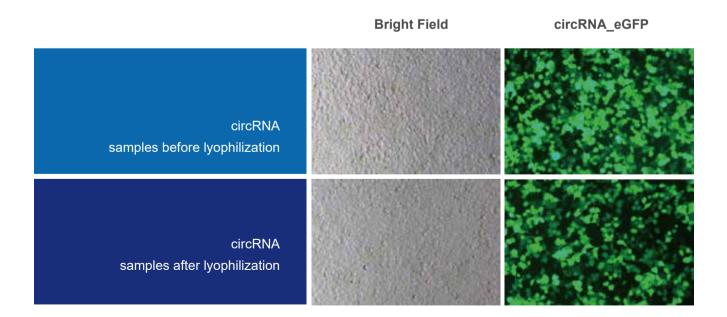
High Stability

circRNA lyophilized powder is easy to store and transport.

Case Study

E-gel electrophoresis assay is performed for circRNA before lyophilization and after reconstituted lyophilized powder to analyze its integrity and purity respectively. The results show that there is no significant difference between the circRNA bands before and after lyophilization, and the test results after lyophilization show good reproducibility.

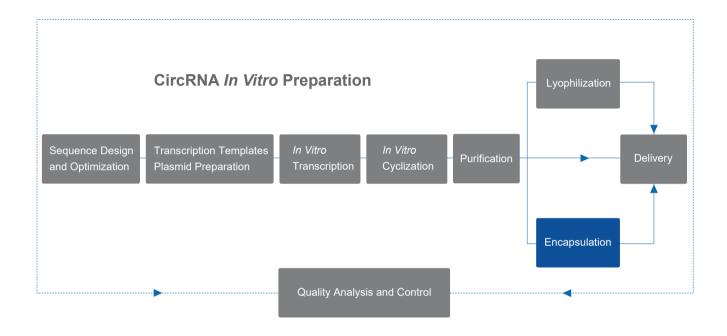
Lane 1: ssRNA Ladder


Lane 2: circRNA before lyophilization

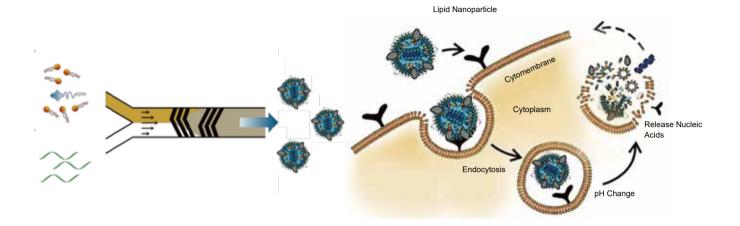
Lane 3: circRNA after lyophilization

Lane 4: circRNA after lyophilization

Lane 5: circRNA after lyophilization


The 293T cell evaluation of circRNA samples before and after lyophilization show that strong fluorescent signals are observed in the pre-product circRNA_eGFP samples before and after lyophilization, and the target protein is expressed efficiently *in vitro*.

CircRNA-LNP


Encapsulation Service

The basis of encapsulation is the design and development of the delivery system. A well-designed delivery system allows circRNA molecules to enter the body without being degraded by RNA enzymes, and then be effectively delivered to the target site, cross the cell membrane, and be released intracellularly. Lipid nanoparticles (LNPs) are the best delivery system available, with advantages in encapsulation, *in vivo* expression, and *in vivo* safety compared to other delivery systems. LNPs with nucleic acid fragments are easily swallowed into cells and form intracellular bodies. Once entering the cell, the acidic environment of the intracellular body protonates and positively charges the head of the ionized lipid, thus fusing with the inner membrane of the intracellular body and releasing the target nucleic acid into the cell for action.

Yaohai Bio-Pharma circRNA service continues to improve, and can provide circRNA-LNP encapsulation service to optimize relevant critical process parameters and improve the consistency and reproducibility of circRNA drug production.

YAOHAI BIO-PHARMA

Pre-treatment of Material and Liquid

Microfluidics

Tangential Flow Filtration

Sterilization Filtration

Two drug substances are prepared: one for circRNA in aqueous buffer and one for lipids dissolved in ethanol.

Rapid mixing of lipid, circRNA two-phase solutions using microfluidic devices, resulting in uniform LNP and highly efficient encapsulation.

The drug substance (DS) is concentrated to the target concentration using a tangential flow technique. The buffer is replaced with a neutral storage solution to remove unencapsulated circRNA, excess lipids and acetic acid.

Comply with sterility regulatory requirements, select terminal sterilizing filtration system and pass the validation of bacterial challenge test.

Service Details

Service Items	Detailed Steps	Delivery Period (Days)	Delivery	
	Material and liquid pretreatment			
circRNA-LNP	Microfluidic device mixing	2	circRNA-LNP drug product (DP)	
encapsulation	Tangential flow filtration			
	Sterilizing filtration	1		
	Encapsulation rate			
circRNA quality control	Particle size and distribution detection	1	Test report	
	Surface charge detection			

Service Advantages

Formulation Screening of Drug Product (DP)

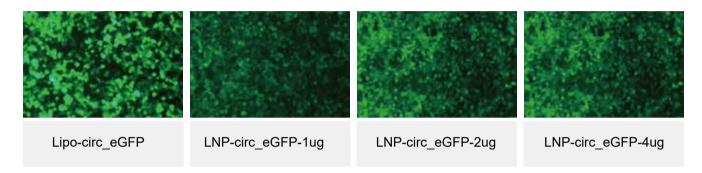
Fast synthesis, high R&D efficiency and pre-optimized solutions;

High Encapsulation Rate

Encapsulation rate up to 90% or more;

Moderate Particle Size

The size of lipid nanoparticles (LNPs) can be controlled by changing the fluid injection rate and ratio.


Efficient Expression

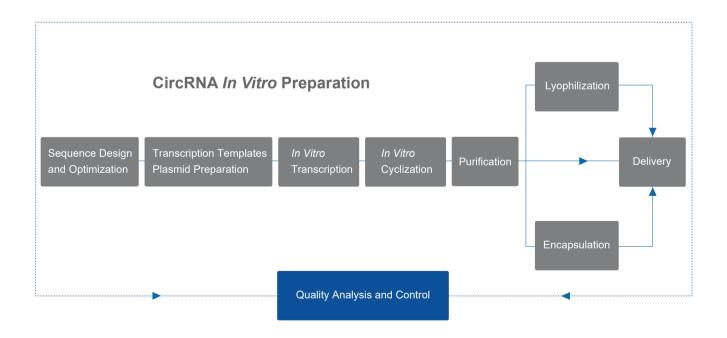
circRNA-LNP products are validated by in vitro cell expression and can express the target protein efficiently.

Case Study

LNP-circRNA_eGFP samples are prepared with different levels (1 ug, 2 ug, and 4 ug) and directly transfected 293T cells to verify whether they can express the target protein. After transfection for 48 hours, a clear fluorescent signal can be observed, and there is a dose-escalation effect of fluorescence intensity.

[Note: Lipo-circ_eGFP is liposome + unencapsulated circRNA_eGFP, as transfection control]

Other Services


circRNA Sequence Design and Optimization	Transcription Template Plasmid Preparation	<i>In Vitro</i> Transcription of Linear RNA
circRNA in vitro cyclization	circRNA purification	circRNA-LNP encapsulation
circRNA lyophilization	cricRNA quality analysis and control	<i>In vitro</i> expression validation of circRNA

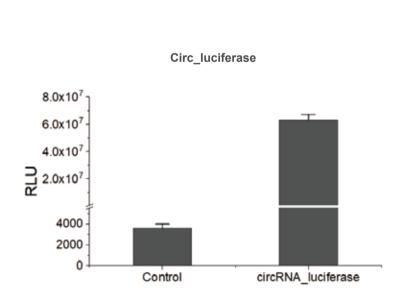
CircRNA Quality Analysis and Control Service

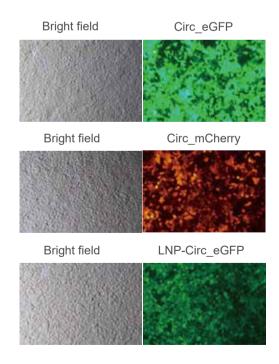
Process Development Flow

In adherence to the stringent guidelines for mRNA quality analysis, Yaohai Bio-Pharma has formulated comprehensive specifications for circRNA drug products (DPs). We offer comprehensive quality analysis services encompassing both cyclic and linearized plasmid templates, circRNA drug substances (DSs), as well as the final product of circRNA-LNP. The detailed scope of these services is outlined below:

Samples	Test Items	Testing Methods	Delivery Period (Days)	Deliverables
	Concentration and purity	Ultraviolet (UV) spectrophotometry	N/A	
Cyclic plasmid DNA	Supercoiling ratio	Agarose gel electrophoresis (AGE)	0.5	
plaomia Braz	Supercoiling ratio	Capillary electrophoresis (CE)	1	
	Concentration and purity	Ultraviolet (UV) spectrophotometry	N/A	
Linearized plasmid DNA (pDNA)	Linearization ratio	Agarose gel electrophoresis (AGE)	0.5	
,	Linearization ratio	Capillary electrophoresis (CE)	1	
	Concentration	Ultraviolet (UV) spectrophotometry	N/A	Test Report
circRNA drug	Purity	Agarose gel electrophoresis (AGE)/E-ge	0.5	rest Report
substance (DS)		HPLC	1	
	Cyclization rate	HPLC/qPCR	1-2	
	Encapsulation rate	RiboGreen method	1	
circRNA-LNP drug product (DP)	Particle size and distribution	Particle size meter	1	
,	Surface charge	Particle size meter	1	
		Cell transfection	4	
Validation of circRNA expression	293T cell evaluation	Fluorescence observation		
		Western blot (WB)/Enzyme-linked immunosorbent assay (ELISA)	1-3	

CircRNA *In Vitro*Expression Validation Service


In addition to circRNA-related quality attributes, Yaohai Bio-Pharma can provide clients with circRNA cell transfection and target protein specificity assay services based on its well-established cell culture platform. By transiently transfecting 293T cells with circRNA, we can confirm whether circRNA can successfully express the target protein in cells *in vitro*. The range of samples available for testing includes circRNA drug substance (DS) and finished product of circRNA-LNP.


Cell Plate	Sample Preparation	Transfection	Target Protein Detection	
③	775		<u> 1</u>	
Recording cell generations Observation of cell morphology Cell plate	circRNA+Transfection reagents or circRNA-LNP	circRNA transfection to 293Tcells	Fluorescent photo shoot Western blot (WB)/Enzyme- linked immunosorbent assay (ELISA)	

Samples	Test Items	Testing Methods	Delivery Period (Days)	Deliverables
circRNA expression validation	293T cell evaluation	Cell plate	4	Test report
		Transient transfection of cells	4	
		Fluorescence signal observation		
		Western blot (WB)	1-3	
		Enzyme-linked immunosorbent assay (ELISA)		

Case Study

Yaohai Bio-Pharma has built a mature cell transfection platform, and the transfection samples include circRNA drug substance (DS) and the finished product of circRNA-LNP. Based on the fluorescent signal and the enzyme-substrate reaction, a strong specific signal of the target protein can be detected.

CircRNA Platform

Equipment

Fluorescence Microscope

Bio-Rad PCR Instrument

Thermo Full Wavelength Enzyme Labeler

YAOHAI BIO-PHARMA

Bio-Rad Gel Imagers

Thermo qPCR Instrument

Waters HPLC

PNI Microfluidic Nanoparticle Preparation System

SCIEX Capillary Electrophoresis Instrument

Cytiva AKTA
Purification System

Single-domain Antibodies (sdAbs) CRO Service Platform

Yaohai Bio-Pharma's single-domain antibodies (sdAbs) CRO service platform is dedicated to providing clients with one-stop sdAbs R&D and production services from strain construction, multifunctional sdAbs expression and purification to large-scale production, which are efficient and flexible to meet clients' different experimental or project needs.

Full ecological recombinant expression system

E.coli prokaryotic expression system
Yeast eukaryotic expression system
Mammalian cell expression system

Diversified single-domain antibodies (sdAbs) types

Monodomain single-domain antibodies (sdAbs) Bivalent single-domain antibodies (sdAbs) Multivalent single-domain antibodies (sdAbs)

Well-developed and perfect purification platform

Complete purification platforms
Combination purification methods
Highly efficient and flexible

From µg to kg

single-domain antibodies (sdAbs) with a high expression of 10g/L Production at a scale of 7-2000L

Full Ecological Recombinant Expression System

At present, Yaohai Bio-Pharma has established a full ecological recombinant expression system for single-domain antibodies (sdAbs). The existing expression systems include: *E.coli* prokaryotic expression system, yeast expression system (*pichia pastoris*), and mammalian cell expression system, and are skilled in using a variety of expression host strains to provide sdAbs with high quality according to the actual needs of clients.

E.coli prokaryotic expression system

- Development experiences of 20+ products
- Flexible selection of different E.coli hosts
- Efficient selection of different expression vectors

YOU TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL

Yeast expression system (pichia pastoris)

- Development experiences of 20+ products
- Flexible selection of different pichia pastoris hosts
- PAOX1 methanol induced expression system
- PGAP constitutive expression system

Mammalian cell expression system

- Rich experience in single-domain antibodies (sdAbs) development of 5+ products
- Transient expression single-domain antibodies (sdAbs)
- Stable transformation strain expression single-domain antibodies (sdAbs)

Single-domain Antibodies (sdAbs) Expression CRO Services

The client provides the gene sequence (or amino acid sequence) of the single-domain antibodies (sdAbs), selects the expression host cells. Yaohai Bio-Pharma provides one-stop gene synthesis to sdAbs expression, purification and production of a full range of customized sdAbs services.

Service Content Period Deliverables Steps E. coli expression system (cytoplasmic or periplasmic space expression) 1 week - 2 weeks for E.coli Construction of single-domain P. pastoris expression systems (excluding gene synthesis period) antibodies (sdAbs)-expressed (either methanol-induced expression system 2 weeks-3 weeks for P. pastoris engineering strains PAOX1 or constitutive expression system PGAP) 1 week - 2 weeks for transient (selection from B.aeruginosa, Mammalian cell expression system mammalian cells, and about 2 months E.coli or mammalian cells) (single-domain antibodies (sdAbs) expression by for stable transformation strains Purification of the obtained transient or stable transfection) single-domain antibodies (sdAbs). purification antibody assay report SDS-PAGE, SEC-HPLC (optional). For the single-domain antibodies (sdAbs) expression RP-HPLC (optional) and CE-SDS Lab scale expression of the constructed engineering strains, purify the 2 weeks - 3 weeks (optional) purity analysis methods purification (labeling) protein for an expression volume of 1 L (labeling is Large-scale fermentation of single-domain antibodies Large-scale expression 5 weeks - 8 weeks (sdAbs)samples, along with the expression purification purification of the fermented nanobodies. **Production Purification Quality analysis** Large-scale process production system system development To achieve optimal fermentation Rich experience in purification of · To achieve higher yields of Quality analysis system assurance expressed single-domain antibodies conditions through single-factor single-domain antibodies (sdAbs) Diversified quality analysis methods optimization of methanol concentra-(sdAbs) fermentation liquid by Flexible combination of various purification Rich experience and purity assurance methods, such as affinity chromatography, optimizing the combination of tion, fermentation temperature, and pH in the fermenter. optimal conditions for nanobodies ion chromatography, hydrophobic fermentation. chromatography, etc. Optimization of methanol concentration Fermentation process optimization SEC-HPI C analysis Ion exchange SDS-PAGE single-domain antibodies (sdAbs) Hydrophobic chromatography

Optimization of the temperature in fermentation process

CE-SDS analysis

CONTACT US

www.yaohaibio-pharma.com E-mail: BD@yaohaibio.cn

Facebook:

www.facebook.com/YaohaiBioPharma

LinkedIn:

www.linkedin.com/company/yaohaibio/

